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0. Introduction. That "fat calculus texts", and therefore calculus courses, are topics based is probably the sin-
gle most important cause for the "cookbook" approach and it is difficult to see how the "fragmentation problem […]
can be resolved by adding an additional semester to the calculus course" [2]. For instance, why should the definition
of continuity, a property of f, be followed with the definition of the derivative, a function, rather than with the
definition of differentiability, a stronger property of f ? But then, the currently prevailing emphasis in Differential
Calculus on the derivative at the expense of differentiability does not result from mathematical or pedagogical con-
siderations and, as a result, does little for an harmonious development: Why should Differential Calculus be based on
the notion of derivative in dimension 1 when it is based on that of differentiability in all other dimensions?
Typically, students are warned that "[while] for functions of one variables, the terms "differentiable" and "has a
derivative" are synonymous, [...] for functions of two variables differentiability is a more stringent requirement than
the existence of partial derivatives" [1] but little explanation is offered and the subsequent treatment of the total
derivative is generally disappointing.

To quote Dieudonné [9] at some length, "the fundamental idea of Calculus [is] the 'local' approximation of
functions by linear functions. In the classical teaching of Calculus, this idea is immediately obscured by the acci-
dental fact that, on a one-dimensional vector space, there is a one-to-one correspondence between linear forms and
numbers, and therefore the derivative at a point is defined as a number instead of a linear form. This slavish sub-
servience to the shiboleth of numerical interpretations at any cost becomes much worse when dealing with functions
of several variables: one thus arrives, for instance, at the classical formula giving the partial derivatives of a
composite function, which has lost any trace of intuitive meaning, whereas the natural statement of the theorem is
of course that the (total) derivative of a composite function is the composite of their derivatives, a very sensible
formulation when one thinks in terms of linear approximations."

Indeed, "the theme of approximation, it [is] agreed, is central to calculus—what it is and what it does" [23] and
I. Bivins has by now received two prizes for his article "What a Tangent Line is When it isn't a Limit" [4]. The
committee's citation for the Polya prize reads in part: "By defining the tangent line as the best linear approximation
to the graph of a function near a point, [Bivins] has narrowed the gap, always treacherous to students, between an
intuitive idea and a rigorous definition. The subject of this article is fundamental to the first two years of college
mathematics and should simplify things for students...." (Emphasis added).

But, if the idea of linear approximation is mentioned in just about every text, it is always as an afterthought and
the "intuitiveness" of the tangent-as-limit-of-a-secant remains unquestioned. For instance, in an article advocating
Carathéodory's definition of the derivative [14], the linear approximation definition is merely mentioned as a
"variation" to be found for instance in [5], [21] even though"[t]his approach has the intended additional benefit of
making transparent the linear approximation of the tangent line".

The reason may be that, to be really useful, the idea of approximation should be extended to the use, alge-
braically, of best polynomial approximations and, geometrically, of osculating curves of degree n.

1. Asymptotic expansions. For real valued functions to represent the way situations change, the
differential calculus, the "mathematics of change", must derive local information—about (mostly) gradual1
changes—from punctual information. The desired information can be qualitative—is f  near x0 positive/negative,
increasing/decreas-ing, concave up/concave down?— or quantitative—what is the approximate value, rate of change,
concavity of f near x0? But, qualitatively, we might also want to know whether, at x0, f  is continuous or
differentiable while, quantitatively, we might ask what the jump or the slope is.

To study functions by way of their local polynomial approximations is then considerably more natural than, to
quote Lagrange, "seeing derivatives in isolation", if only because it is quite reminiscent of the use of decimal ap-
proximations in arithmetic. And the advantages are that: i. it organizes, unifies and simplifies the differential
calculus [[13], ii. it extends, naturally, to the Frechet derivative in multivariable calculus, to Banach Spaces, and to
jets in Differential Topology and, last but not least, iii. not only are the "naïve" proofs in this setting natural and
plausible, but they are easily made rigorous.

                                                
1  A theory of abrupt changes is provided by Catastrophe Theory.
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A function f can be as simple as a polynomial or as complicated as a fractal. In arithmetic, we might approxi-
mate as complicated a number as π by a simple decimal expansion such as 3.14, writing π = 3.14 + (...) where the
ellipsis represents the complicated but small difference between π and 3.14. Thus, a natural idea when studying
f (x0+h), the value of f near a point x0, is to try to separate a principal part, that is a part smooth enough to be rele-
vant to the information being sought, from a remainder, a part too small to be significant in that regard.

The simplest approach is to distinguish P(n)(x0,h), a polynomial part of degree n in h = x–x0, from a remainder
R (n)(x0,h) small enough that, compared to P(n)(x0,h) and for the given purpose, it can be neglected. By this, we mean

that is R(n)(x0,h) = o[hn] which we read as saying that R(n)(h) approaches 0 faster than hn, that is limh∅0 
R (n)(h)

hn   =

0; graphically, this means that the graph of |R(n)(h)| is under the graph of |h|n in a neighborhood of 0. Also, since h
is small, it can be thought of as 0.1 so that h2, h3, … can be thought of as 0.01, 0.001, … .

This use of approximation is not only quantitative (numerical) but also qualitative as an approximation should
be determining in the sense that the approximating function should be equivalent in some specified manner to the
function being approximated, say, for instance, up to a diffeomorphism. When using polynomials as approximating
functions, they are called the jets of the function [6].

In other words, we are using asymptotic expansions (as opposed to series expansions as in [18]) with the power
functions as gauge functions [10]. For beginning students it is enough to point out that the principal part carries the
relevant quantitative information and that the remainder carries only the qualitative information that P(n)(h) differs
from f (x0+h) by a small amount and just write f (x0+h) = P(n)(h) + (...).

2. An example. Since "[g]raphing rational functions is one of the more difficult tasks in calculus" [19] let

us consider, for instance, how the function f(x) = x
x3–1  can be studied by way of approximations.

We study f near its pole: f(1+h) = 1  +  h
3h + o[h]   = 1/3

 h      + o[h] by division in ascending powers and, at ∞, we get,

by division in descending powers, f(x) = 1
x2  + (…). This gives us the graph of f outside the region represented by the

dotted square in (Fig 1), its largest part in spite of appearances.

+1 +1

Figure 1. Figure 2.

The proximate graph in Fig. 2. is then obtained by joining the local graphs smoothly. While there could be
"fluctuations", this is the graph that would be seen from far away and it shows the existence of at least one maxi-
mum, at least one inflection and at least one zero.

To validate this, we must show that the function f is smooth everywhere except at the pole. Near a point x0

other than the pole 1, say 2, f(2+h) = 2+h
(2+h)3–1   = 2 + o[1]

7 + o[1]   = 27   + o[1]
7 +o[1]  = 27  + o[1] by division in ascending

powers. That the remainder is o[1] shows that BCA f(2+h) = 27   = f(2) is the best constant approximation of f(2+h)

and that f does not jump at 2.
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Similarly, f(2+h) = 2+h
(2+h)3–1   = 2  +  h

 7 +12h  + o[h]   = 27  – 17
49  h + o[h] by division in ascending powers. That

the remainder is o[h] shows that BAA f(2+h) = 27  – 17
49  h is the best affine approximation of f(2+h) and that f has a

tangent at 2: T2 f (x) =  27   – 17
49 (x–2) . This is precisely how the tangent plane is defined in higher dimensions [12].

Moreover, the coefficient of h, – 17
49  , is the instant rate of change of f at 2 since – 17

49   = f (2+h) – f (2) – o[1]
h   

and thus – 17
49  = limh∅0 f (2+h) – f (2)

h   . In other words, the rate of change of f is that of its BAA.

3. Elementary Differential Calculus. Qualitatively, the sign of the coefficients of h0, h1 and h2 in the
principal part of f(x0+h) give, respectively, the sign, the variation and the concavity of f near x0. More generally, we
define a function to be continuous iff it is locally approximately constant2  and to be differentiable iff it is locally
approximately affine. Thus, calculus notions, continuity and differentiability, appear here as systematic
generalizations of precalculus notions, constancy and affinity.

Quantitatively, the coefficients give the value of f and of the successive rates of change: We define f', the deriva-
tive of f, to be the function whose value at x0 is the coefficient of h in f(x0+h). More generally, for a function that is
n-differentiable (locally approximately polynomial of degree n), we define the nth derivative of f as the function f
(n)(x) whose value at x0 is n! times the coefficient of hn in f(x0+h) (Peano derivatives [7]). Alternatively, we could
define f' as before and then, recursively, f (n+1) = [f(n)]'. Even though the existence of an osculating polynomial of de-
gree n does not quite insure the existence of any recursive derivative of order >1 [8], for all practical purposes, the
two notions are equivalent.

Most of the usual theorems of the differential calculus, e.g. the derivation rules, the inverse function theorem,
can be proved much more easily because, systematically, the proofs involve computing f(x0+h) and looking at the
coefficient of h. The "derivative tests" become trivial and L'Hôpital's rule superfluous. And even if defining continu-
ity at x0 by the local existence of a best constant approximation does not help to prove that a continuous function
on a closed bounded interval is bounded, it points out very clearly where the difficulty lies. Because f is continuous
on an interval, say [a,b], ∀x0 ∈ [a,b], f (x0+h) = f (x0) + o[1]. Suppose h is in a neighborhood of 0, whose size

depends on x0, such that o(1) < 1
10  for example. If we knew that we could cover [a,b] using finitely many of these

intervals, say N, then f (x)–f (a)   would be bounded by N
10  and the theorem would be proved. This then raises the

question as to whether, from any open covering of a closed bounded interval, we can extract a finite one. The Mean
Value Theorem is seen here as a remainder theorem, that is as providing bounds on the error made when we approxi-
mate f (x0+h) by f (x0). Finally, following Picard [20], the Fundamental Theorem is proven by solving by finite
differences the following initial value problem: given a function f(x), find the value at x1 of a function F(x) such that
F(x0) = y0 and F'(x) = f(x). Stressing the "antiderivative aspect" is more important, at this point and for most
calculus students, than stressing the "measure theoretic aspect" which, in practice, devolves into teaching integration
techniques.

In the case of algebraic (resp. transcendental) functions defined as solutions of functional (resp. differential) equa-
tions, the method of undetermined coefficients gives, near the initial point, an approximate polynomial solution
whose properties announce those of the exact solution. After we obtain an (approximate) addition formula, we can
obtain approximate polynomial solutions near other points but this involves passing from the local to the global.
This gives a good approximate local study of transcendental functions except near ∞. Once again, the behaviour of
these functions at ∞ is new and makes it necessary to include some of them as gauges. For instance, after we observe
that, near ∞, ex cannot be approximated by any power function, we include it as a gauge to study further functions.
Such a study of the approximate solutions serves as an excellent introduction to the study, assuming their existence
[22], of the exact solutions carried out as in, for instance, [17], [11]; the approximate solutions can then be shown
to be the Taylor approximations of the exact solutions.

Of particular interest for students intending to pursue a career in sciences other than mathematics, physics or en-
gineering, is the fact that the basic attitudes developed by the above treatment are precisely those needed in the study
of Dynamical Systems, the first place where real applications become feasible. Until Poincaré, the emphasis was ex-
                                                

2  If nothing else, this makes it immediately plausible why a function continuous over a closed interval should be
Riemann integrable.
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clusively on finding solutions in closed form and/or series solutions but the solutions are usually in so complicated
a form as to necessitate difficult qualitative methods of investigation to describe their behaviour. In contrast, a direct
study from the equation and the phase portrait is often quite feasible [3] and can therefore follow immediately the dif-
ferential calculus sketched above.

4. Conclusion. From Newton and Leibniz to Robinson, the desire has always been to extend calculations be-
yond algebra but, in the conventional calculus, we do not calculate anymore. Lagrange wanted to free calculus from
"any consideration of infinitesimals, vanishing quantities, limits and fluxions and reduce it to the algebraic study of
finite quantities" [15], [16]. While he did not entirely succeed as the algebra of little ohs rests on the notion of limit
at 0, this algebra—explicit or implicit—provides a treatment of elementary calculus that is incomparably transpar-
ent.
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